Covers and Envelopes over gr-Gorenstein Rings
نویسندگان
چکیده
منابع مشابه
Injective Envelopes and (Gorenstein) Flat Covers
In terms of the duality property of injective preenvelopes and flat precovers, we get an equivalent characterization of left Noetherian rings. For a left and right Noetherian ring R, we prove that the flat dimension of the injective envelope of any (Gorenstein) flat left R-module is at most the flat dimension of the injective envelope of RR. Then we get that the injective envelope of RR is (Gor...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملIntersection Multiplicities over Gorenstein Rings
LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...
متن کاملPeriodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملVanishing of Cohomology over Gorenstein Rings of Small Codimension
We prove that if M , N are finite modules over a Gorenstein local ring R of codimension at most 4, then the vanishing of Ext R (M,N) for n ≫ 0 is equivalent to the vanishing of Ext R (N,M) for n ≫ 0. Furthermore, if b R has no embedded deformation, then such vanishing occurs if and only if M or N has finite projective dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1999
ISSN: 0021-8693
DOI: 10.1006/jabr.1998.7722